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1. 

INTRODUCTION 

The classical Picard's existence theorem E43 in the solution 
of a system of ordinary differential equations has been extended by the 

introduction of an arbitrary function. It plays a dominant role in the 

generation of an iterative methodology. 

Two diverse points of view are employed for the justification 

of the extended theorem, The first orientation begins to diverge from 

the classical one at the point of recognition of the implication of an 

arbitrary function in the solution. The second point of view c23 has 
its origin in the concept of a function space in whose postulated struc- 

ture inheres a unique invariant of a contraction transformation of the 

space into itself. This invariant is the solution of the system of 

equations. ,. 

Both points of view contribute to an intuitive grasp of the 

, mode of proof of the extended existence theorem and the possible metho- 

dologies that f l o w  from these orientations. This is specifically s o  

relative to the more abstract considerations. One of the methodologies 

briefly discussed in the paper has been used in reference based on a 

specialized existence theorem, 

The paper consists of tkree parts. The first two deal with 

the proof of the extended existence theorem. The first part uses classi- 

cal notions in the generation of the theorem with the necessary deviations 

to incorporate the concept of an arbitrary function in the sequence of 

iterative solutions. The base of the development in the second part is 

the concept of a complete metric space in which a contraction mapping of 

. the space into itself leads to an invariant which on interpretation. is . 

the unique solution of the system of differential equations. To gain ' 

further intuitive insight into the theorem with its intrinsic methodology, 

a geometric correspondence to the analysis is observed. 
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The last p r t  is concerned briefly with two o f  the many possi- 

ble methodologies involving the arbitrary function. This part also con- 

tains the derivation of an error function which measures the deviation 

of any element in the sequence of iterative solutions relative to the 

actual solution of the system of differential equations. 

I 

I. TI53 EXISTENCZ GiF SEQUEiiTiAL SOLUTIONS GEWERATED BY 
ARBITRARY F " C T 1 O N S  

The initial phase of the paper will be to extend Picard's 

existence theorem 141 in the iterative solution of a system of dlifferen- 
tial equations through the introduction of arbitrary functions whose sig-  

nificance in methodological development will be unfolded. Two distinct 

processes in the proof of the extended existence will be given. This 

part of the paper will involve the classical point o f  view c11 with the 

necessary deviations relating to arbitrary functions. The second pro- 

cess wiil involve a more potent abstract base given in the second part. 

The Hypothesis on the System of Differential Equations: Let 

- A 7& = $.+[J)y> y$- " J  y), i = p , 3 3 - - - , f n , l  
d x  

(1.1)s 

be a system of  differential equations with initial conditions 

W + J  The function $2 , for anyi in some spaces 
continuous in a domain 

, is 
OCshi'defined by the in-qu 

single valued and 

.lities 

Finally for any two points (X ,  yJ-- - ,ym)j  ()f$~;---, yr)&he function f 

for any , satisfies the Lipschitz condition 
(1.4) 1f'((xt)';---'f")- f*(x,Y;---,7~~l-<KiIYi Yi l  f o r  each 
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. 3. 
The continuity of f(x, 7: - - -> y*J implies + " [ x ,  Y, --- y,,,,) L M on D 

where M is the greatest of the upper bounds o f f :  --- For 

the purpose of the discussion,irnpose a more restrictive condition on x 

namely that the domain 0 

f" 03 D 

I 
D be defined by the inequalities, 

the system of integral equations 

if they also satisfy the conditions (1.1) and (1.2). The well known 

iterative process in the determination o f  the unknown functiony", for anyi3 

implies the generation of the sequence o f  functions, 

by means of an extension o f  the system (I*S), namely 

Each elementvb of  the ordered set (1.6) is generated from 

(for any i) by the operational process 
n, 

its immediate predecessor yc 

involved in the +WIXW system (le7)* 

of the initial element 

function Y:(K) is not defined by (1.7). 

* ) - I  

Ultimately y $ ( y )  becomes a function 

However the v,"(xj, ( y z a ) ,  of the sequence (1.6). 
It follows that each element of 

on any undefined or an initial arbitrary func- 

element y," (y) we propose two assumptions : 

is continuous (or even bounded) on I X - % ~ I & & J  

In other words the initial arbitrary functions are assumed bounded and 

take on the initial values of the function 74 ' (~ )  at x = X ,  on the domain D', 



4. 
Our purpose will be fulfilled if it can be shown that: (1) a 

set of limiting functionsf\IC(r), A*= 42,---,9~75 exist for the ordered aggre- 

gate (1.61, (2) the set o f  limit functions are independent o f  the collec- 

tion of initial arbitrary functions f'Yz(d2 (3) Y'Cx) = Y L P )  

given system of differential equations for an i, (4) yL(X) 
the initial conditions and ( 5 )  are unique relative to the initial values 
and f o r  any choice of the continuous arbitrary functions. These state- 

satisfies the 

satisfies 

ments, in fact, constitute, in the rough, the extended existence theorem. 

Proof  of the Inequalities: The basis in the proof of an extended existence 

theorem for the limiting functionYc()ois to show that the following in- 

equal i t i e s 

are valid, The proof will be given by mathematical induction. 

On the assumption (1.8) that the collection of initial arbi- 

trary functions ,r,"o, of the sequence (1.6) is continuous on the inter- 

val I X - X 6 [ 4 k  it f o l l o w s  from (1 .7)  that for n~ S /  , the set Ex'h),--- 
Vtq&g is likewise continous on that interval, The necessary boundedness 

of the above set is incorporated in the restriction that it is to satisfy 

the inequality 
(2.3) IY;(XJ - Y,"(x)I I X - X o l  4 4  3 ~ c s ~ z ~ - - - ~ n ? ? *  

Let US now assume that the expression (2.1) is valid for (*'I) 



This is so since& (as in ( 1 * 3 f )  is given as the least of the quantities 

The second inequality (2.2) is, by comparable means, also 

shown to be valid. For if it is supposed that this expression is true for 

In view of the expression (2.1)y the above inequality is true for m = ~ .  

The validity of statement (2.2) is thus established. 

. The Extended Existence Theorem: A few classical facts inthe form of 

theorems plus the extended existence theorem will be formulated in this 

section. 



6.  
With the definition [3] of a uniform convergent series in mind 

( w h i c h  of course incorporates the condition that h is independent of x 

we have tLe 

Theorem 1: The series 

is absolutely and uniformly convergent on the interval I X -  YO 16 

Moreover since v,Y,ruj is continuous, for each i, implied by the 

postulated continuity of the initial function v:(R)over the =me x interval, 

it is readily shown by induction that for any n, each element in the se-  

quence of functions (1.6) is continuous. Hence 

Theorem 2: 

tinuous on the interval I%-&\ f -& , 
fest from the character of the series representing it over the interval. 

The function Y'(V),given by expression (3.1) for any i, is con- 
In fact the theorem is also mani- 

. 

Consider the expansion of y,"(%) by the identity 
y i ( ~ )  - 7:p) ,S ~;(J+Y;OJ+ y , ~ ( r ~ ~ ~ ; C ( r i + - - - + ~ ~ ( r l - ~ ~ , ~ ~ ~ ,  4%1,&, -  --s m, 

A comparison of (3.1) and (3.2) asoz+Oogenerates the limit function 

\((r) = limit v,,, 
Y +co 

This allows the formulation of 

Theorem . 3 :  

of iterative f'unctionsfYt(~Jj i c / , L , - - - , m  J m = 4 l J 2 3 - - - j  

of the set is continuous on the interval \ % - * * \ e A .  

A limit function yC(g)exists, for each i, of the ordendset 

Every element 

The following theorem is readily shown. 

Theorem 4: The limit function vL&) is a solution of the integral equation, 

By means of definition (3.1) and the Theorem 3, 
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. 7. 

We now prove 

Theorem 5: 
same as the solution ? C ( r J  of the system of  differential equations (1.1) 

The solutionY'(rl of the integral equation (3.4) is the 

and satisfies the same boundary conditions, namely 

SO that Y"(1)and r'(xl satisfy the same system of differential equations 

(3 .6)  

To show that the limit function fulfills thes ame initial conditiors as 

yi(x/ substitute the value A=x6 in (3.4). This leads to t he initial 

stipulations 
- - 5 -7Tf = v . c / v . \  -+A , A- = !, 2, 

oJ 

The uniqueness of the limit function is given by means of two 
[: y"Cgj-7 J x = Y ~  \ \p"J  - 

theorems that follow. 

to initial conditions and the second asserts the independence of the limit 

The first theorem specifies uniqueness relative 

function with regard to the initial function of the sequence of iterative 
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functions. The latter theorem, as will be shown in the seque1,is basic 

to an approximation methodology. 

Theorem 6: 

solution of the given system of differential equations with the associated 

The limit function Y'(r) = k i=~,~,---,oyis a unique 
3L-+coy'yI. 3 

specified initial conditions. The validity of  this theorem follows 

immediately from the observation that the specification of the Lipschitz 

condition implies the theorem. 

Theorem 7: The limit function Y4(X)is indepeneent of the choice of the 

initial function Y,(rj in the iterative sequence of functions 

p ; h ) + / , z , - - - p l j  m d = 0 , l , L , - - -  3 0  

Suppose that the two functions Y'(xJ andyC(w) are the limits 

of the respective sequences ( yoc, y,", "I;, - - -;I 
d CLTCf I?:, Y,", +y,---)* Each sequence 

. By Theorem 4, is generated by the respective initial functionsyk, Tob 
each of the limit functions satisfies the integral equation 

x v 
Y+Y) = vc; + 1 +'[q Y'(V),-- - , Y (lhg dr/; y Ydj = Yo4+ J .$ "cu, y(lJJ$ - -3 7 W(LJjJ dd 

X O  )cb 

respectively, where it is assumed that the s m e  initial conditions, [ y I ( r 7 , ~ ~  

subsist. Since the form of the integral equations are the same, = y; 
it follows from Theorem 5 that each limit function satisfies the same 

system of differential equations (3.6) with the same boundary conditions 

. Finally by Theorem 6, this system with the assoc- L C 3 W X =  y; ai; 

~' (JJ = yio(); L. 5 

iated boundary conditions impli& a unique solution. Hence 
c 

L,-- -, ow; I x-xo 1 f 4, 

The preceding theorems will now be assembled into a single 

one with the hypotheti c.al s p s c i f i c a t i c x x  inccrpsrated, T h i s  s - i u i m l z l n g  

statement is an extension of the classical existence theorem (Picard) 

for the solution of a system of differential equations with its associated 

boundary conditions, The extension specifies the solution of the system 

as a limit finction of a sequence o f  functions each of which (except the 



9 .  

initial one) is a solution of a system of integral equations. The ini- 

tial element of the sequence is arbitrary whereas the remaining functions 

of the ordered set are ultimately dependent on it. However, the limit 

function, itself, is independent of any specific choice in the replace- 

ment of this initial arbitrary function. 

Extended Theorem 8: ( A )  

of the sequence of continuous functions ~ Y : ( Y I ;  i= + r , - - - , w ; / ~ b O ;  I X - X D ( = & ,  

is a unique solution (for each i) of the system of differential equations 

The continuous limit function \(‘(%I, L=I,4--5*w1;o(-Ya1~-& 

- .  

and ( :, is independent of the initial arbitrary function rt()] 
sequence f4:(~~5 
tial one) satisfies a system of integral equations of the form 

in the 

. Each element in the ordered set (except the ini- 

domains R and R ’  are defined respectively by the inequalities 

Ix-XoI e& I Y”- Y,,Ie b; (~~,f‘,-, G ~ R ’ C  R . The quantity h is 
defined as the smallest quantity in the collection (CL -, b’ -- - ’ X  bm) 

f 4 ( X ”  4 ; - - - , F )  . 
M 

and where M is the largest in the set of upper bounds of  the functions 

Two items in the extended theorem are worthy of  note. 

(1) The hypothesis that the functions 3” are continuous over the speci- 

fied domain is too restrictive. It may be replaced by the conditions 

that the functions be bounded with no change in the proof. However, the 

hypothesis of continuity will, for this paper, prove to be sufficiently 

useful. ( 2 )  The three properties of the initial function v,”Cxj in the 
iterative sequence [ Y~”,Y,”Y~,---) ,  namely that yz(r)is arbitrary (but 

assumed continuous on the defined x-interval), that the remaining func- 

tions (0170) are dependent on it and that the limit function Y’tYJ =&~y~(yJ ,  
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contrawise, is an invariant relative to it, these properties are precisely 

the ones which will allow the evolution of a general iterative methodology 

in the solution of systems of differential equations. This subject will 

be developed briefly in a section of the final part of the paper. 

I1 THE SPATIAL STRUCTURE OF THE EXTENDED THEOREM 

An elegant mode in the formulation of the extended existence 

theorem is to exhibit the more abstract fom which the proof evolves. 

This more general presentation will generate a new point of view and so 

give larger scope to applications of an iterative process in the solu- 

tion of systems of differential equations. 

Introduction to the Concepts: The concepts involved in the subject matter 

are the notions of a complete metric space and the contraction mapping 

of that space into itself. The definitions and some o f  the consequences 

are taken from reference [ 2 ]  

A metric space consists of two items: a set X of elements 

(points) and a single valued, non negative real function e0(,7)j x , ~  

called the metric (distance) of the space. This function satisfies three 

axioms given in theabove reference. If R is a metric space, a sequence 

l X - 3  of points G (3 is called fundamental if it converges to some limit 

(i.e., if it satisfies the Cauchy criterion). The metric space R is said 

to be complete if every fundamental sequence in R converges to an elementtR. 

A mapping A of an arbitrary metric space into itself is said 

It is readily verifiable that a contraction transformation is a continuous 
function. The following theorem is basic to a complete metric space p r 3 1 :  
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Every contraction mapping A defined in a complete metric space R has a 

unique invariant point. Thus the equation = X  has a unique 

solution, namely the pointXCR under the transformation A if' it is 

transfoniied into itself, is trarisivrued u n i q u e l y .  

The Space of the System of Differential Equations: The initial assump- 

tions on the system of differential equations are the same as that given 

in part I but with a more abstract orientation. Thus consider space 

with the ordered(-m+l)- tuple ( X ,  YJ---> y m  

(X,y) of that space. To each point is associated a collection of con- 

tinuous functions 2 f"(~,  yi - --, yw; &'= 1 ,  L, - - -)w 

which defines the components of the direction element at any point (x,y) 

in that region, namely 

a x  

as a generic element (point) 

-+/ on a region o c R 

(4.1) .- = j Y w ;  - - - , y " )  3-L=r ,2 , - - -3n*c  

with an associated set of initial conditions 

The function+b 

equal i t y , 
(4.3) l f L { x , ~ , ) -  f 7 x * ~ s 1 5  ~ M ~ , ~ 1 4 ~ 5  Y1-"l 

for any i, is further restricted by a Lipschitz in- 

m 
and where M is defined as the greatest of the upper bounds of 3; ---3$ on 0. 

On the basis of the aboveassumptions, the validity of the ex- 

tended theorem 8 will be shown in a different perspective. Again it will 

be seen that a set of unique cont inuons l i m i t  ffinctinncc of a s e q c e ~ ? ~ ~ !  ~ f '  

continuous functions (over a specified range) exist which satisfy the 

system (4.1) and the associated conditions (4.2) and which set is inde- 
pendent of the collection of arbitrary functions,involved in the sequence, 

as an initial element. 



Contraction Mapping in a Function Space C2,prd: Introduce the metric space 
Cyy with a general element y(x) defined as a continueus function over a 

specified x-range. The element y(x) is given by an ordered m-tuple of 

functions 

(5.1) 

each; component of which is continuous for all x in the interval l x - x e i 6 h  

and such that \ 4 ' ( # ) S  9 4 a positive quantity, x =  i9 2>- - ->  q. 

The quantityA70 is so chosen that the two conditions 

(5.2) C k , y ( x ) ] € D  L j  I X - % 4 L -  a 9 4 Y = ~ ; I f : K A  

(5.3) MALI  
The distance functione, chosen for the metric space Cy is 

defined by the statement 

(5.4) e[Y,,(d, ~'(x)J= m&xJi 17;- r,".l/ j A. = '3?1 - - - 2 m  j ' x - x u 1 6  A 

where ' Y p z  ( Y ; , - - - , V y ) ,  Y+(Y;,--- y?) are any two points E. Cw 

Finally, it is readily shown[rJP37] that the given metric space is corn= 

plete. We may summarize by stating that the function space C* is a com- 

plete metric configuration whose elements are continuous functions over a 

defined x-range. 

If a defined mapping A is introduced into the space Cm , it 
will have to be shown that this mapping function is a contraction if the 

basic theorem of a contraction transformation of a complete metric space 

into itself,is to be applied. The procedure, in what follows, is to in- 

troduce by definition just such a transformation. 

The transformation A on Cm implies the operational equation. 

(5.5) y.p (Y) = FI Y ~ ( X )  j ~3 ( 8 )  a given point, y,trJ its image; Y s , ~ *  E: C m  

. The general relation (5 .5)  is defined to take the specific form of an in- 
tegral equation, 
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(5.6) Y , C X )  = + f [V,V,.,(OJJ 3 = ' J ~ J - - -  

This operational equation implies a countable ordered set of functions 

(5.6 * ) 
Each elernenty,,(x)in the sequence is generated by its immediate predeces- 

sor ym-, (but for the initial function Yo(vJ ) by the defined transforma- 

tion ( 5 . 6 ) .  

L: 
[ " I , ( X J j  'Y, (YJ > "f,(U), - -  -.I 

The initial element Y,(K) is manifestly undefined (arbitrary) . 
However, we will endow it with one property, namely that it be continuous 

over the interval(X-Yml=-& . This implies, by virtue of statement 

( 5 , 6 ) ,  that the remaining functions 7, ( Z h  Yr(gJ:, -- - of the sequence ( 5 . 6 ' )  

are likewise continuous for the specified x-interval, 
* Since each element ' ' f(*jCC is defined as an ordered m-tuple, 

It follows that the integral equation (5 .6 )  may be written 8s a system of 

componental equations. Thus 

We now show that the sequence of integral equations (5.7) represents a 

contraction mapping of the complete metric space cw into itself, 

The statement (5.7) leads to the expression 

The application of the Lipschitz oondition (4.3) to the right mmber gives 

The equality (5.8) thus turns into the inequality 
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where by the assumption (5.3) bI,hLI 

Since the difference (7:(xJ- ~ ' ( w J )  of the left member of (5.10) 
-I-# 

is continuous for any i, n and x in its given interval, it follows that 

this difference has a numerical maximum for some i and X. SO that the 

expression ~PI&~,~IY:(J()- Ymt,(s)I 

Thus the statement, derived from (5.10), 

(5.11) W',+IVz(d-Y,C,IxJI 5 V - P . ~ ~ ~ ~ L ~ Y ~ O ( J - Y *  m-r &-a 3 MAisi 

would still be 5 right member of (5.10) 

is valid. 

In view of the definition (5.4) for the metric e of C3", the 

inequality (5.11) may be written as 

(5.12) r(4:,Tm:,) MMYv:-,>y&) 5 

, But the expression (5.12) is, by definition, the condition that the map- 

ping function A as given by (5.6) or in the componental form (5.7), be a 

contraction mapping of the space C'w into itself. 

take on the more general form 

In fact (5.12) mag 

The space C** may now be fully characterized by the 

Theored: The set C~ of continuous function elements y(x) = [Y'(YJ,---~ y*(rJ 

f A is a complete metric space with an a l l m  able contraction 

transformation which leaves the space invariant. The metric function 

is defined by formula (5.4) and the contraction mapping by (5 .7 )  which 

generates the sequence 
rwclCIrl *iVi ,--7 L = I ~ L . - - - ; * ;  ! x - y e \ k A  
L # b L r J i  t p J 3  -4 > 

of continuous functions where the initial collection [Vd kJ, - - - ,~? ' (xf l  

. is arbitrary but with defined continuity over the x-interval. 
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The Application of the Principle of Contraction Mapping: The system of 

differential equations (4.1) together with the associated set of boudary 
conditions (4.2) is equivalent to the system of integral equations 

(6.1) y'($j = 

We must now show the type of relation that exists between the solution 

of (4.1), (4.2); (6.1) and the solution ' y : (x )  of the contraction mapping 

given by the expression (5.6) or (5.7). 

Y 
+(f"[V,Y'luJ,---, yl*(v)) ctd j i= 5 % - - - )  rkl 

xt 

We repeat the statement of the basic theorem for a contraction 

mapping A Every contraction mapping A defined in a complete 

metric space C* has one and only one invariant point, namely that the 

equation Y((XJ = fly(%), Y&J €Cy has a unique solution in C w  . 
applied to the contrackion operation given by the integral expression 

(5.7) in its limiting form, 

k433. 

This theorem 

thus necessarily leads to the unique solution 

( 6 . 3 )  Y ' C X I  - - -ey;-, +,+- " I , " (x ) ;  / X - % J d j  L = b % - - - > m  

and which satisfies the initial conditions 

The symbol u"(~) denotes the limit function. 
sequence of functions 

Stated otherwise, the 

with Vg(xJ arbitrary but continuous, has (by virtue of the fact that C" 
is 8 csxqle te  space]  a IlrrLi and since the mapping function iwnich gener- 

ates this sequence) is a contraction, it follows that the limit function 

\ 

yc()ljis unique and so  independent of the character of the initial element 

y 2 [Y) f o r  any i. 
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The relation between the unique limit function yL(y)= &+c)cj 

o f  the sequence (6.4) and the unique solutionYO<) of the system of  differ- 

ential equations (4.1) and its associated boundary conditions (4.2), is 
now readily established. If the integral expression (6.1) is viewed as 

a contraction mapping, namely 4c(s1= ur'(J/ then the unique limit function 

m4cw 

Y 4 0 )  of the sequence (6.4) must be the same as the T'CyJof (6.1), since 

any arbitrary sequence in a complete metric space with a contraction 

transformation leads to a unique limit. 

of (b.l),now viewed as a system of integral equations, has the same 

unique solution as the solution r'cx) of the system (4.1), (4.2). It 

follows that 

But the so1utiony4@/ , for any~cd 

(6.5) y4(f) s y4(%), =/#zJ---s@l 3 ' Ix -%alLA 5 

A final observation is made to emphasize (a fact noted more 

of  . than once) the significance of the initial arbitrary function 7,(>0 

the sequence (6.4) and whioh thereby also allows us to make the necessary 
connection with the extended existence theorem of  part I. The elements 

in the sequence (6.4) of approximate solutions, generated in order (but 
for the initial element) by the contraction transformation (or thesystem 

of  integral equations (5, '7 j ,  are, as has been noted, dependent on this 

initial function. Its arbitrary character (modified by the demand that 

it be continuous) implies (by the properties of the C w  space) that for 

each choice of the initial functionyo"(r) a new sequence is evolved and 

that there exists as many sequences as there are choices, However, we are 

told that the limit function for any sequence is the same (unique). namely 

. that yc(p) is invariant for every sequence generated by the contraction 

mapping and the initial function, 

verbatum the extended existence theorem of part I and to assert its V a l -  

This observation permits us to write 

idity. 



A Geometric Interpretation of Contraction in C : A spatial representa- 

tion of the analysis involved in the formulation of the extended theorem 

will be given in what follows. The purpose is to point towards an iso- 

morphism whose existence allows an intuitive insight into the analysis 

and leads to more extensive analogies in application. 

The general element v ( x ]  = [U'CY~, - - - > Y*"(x)] of the metric 

space C" is a continuous curve C given by the m parametric equations 

(7.1) Y L = Y 4 ( x )  X.=I ,s~j - - -2 /h l  

where 

meter x satisfies the inequality 

which the curve C is continuous. The metric function e of C" , given 
by (5.41, is the distance between any two points, say yp and Ys , on 
the curves CI, l Y g =  7fl4 
coordinates satisfy the definition (5.4) f o r r  . 

Ly'(%17r=fb- - 4  'yc,,,.c=/,---J+qis an initial point on C. The para- 

X 0 - 4  j X f ~ ~ + &  and is the range for 

and cs = "I,c(X) respectively and whose 

From the fact that C m  is a metric space, it necessarily 

follows that the space is also complete, namely that if a sequence of 

curves (CO, c,, c l ,  ---) 
tal sequence) then C Cm . A metric space is also a complete space. 

converges to some limiting curve C ( a fundamen- 

If on this complete metric space an independent transforming 

constraint is imposed, namely a contraction mapping A of the space into 

itself, the structure of the space becomes s o  concretely organized that 

for any arbitrary fundamental sequence of curves in the space, one and 

only one limiting curve exists belonging to that space. 

curve is the unique invariant of the contraction mapping function of the 

cvrnplete metric space C ' ' I  transformed into itself. 

This limit 

M.. 

If the transformation A is specifically defined by the system 

of integral equations (5.6) or (5.7) (and this definition has been just?- 
fied) then for any arbitrary curve Co , given by "1'OL= '704()o, ~ = I , a , - - - > o q  

a convergent (fundamental) sequence (Ce, C, , CA,-- - )  of curves of C m  



. is evolved (generated by ( 5 . 6 )  or (S.7))whose limiting curve C is the 

unique invariant of the contraction napping A of C . Thus to any arbi- 

trary curve C, will correspond a family of sequential curves c4 
(generated by the mapping A )  whose limiting curve C is the unique invar- 

iant of the transformation. The sequence of curves (including the 

initial one) and the limit curve are all elements of C m .  

* 
i=  1, %--->-I 

If it is further postulated that the initial arbitrary curve 
Y 

passes through a given initial point [ -"o(J7/y=y~ yo, A. = I, ---> oq 

and that LO cyo = c/,l[r)lJ is continuous over the interval Ix-x.\f& 

then the sequential fami ly  becomes a pencil of continuous curves which 

converge to the unique invariant continuous curve C which likewise passes 

through the given initial point. To each choice of the arbitrary curve 

will correspond a sequential pencil of curves and there will exist as 

many pencils as there are arbitrary continuous curves on an interval. 

But whatever the choice of the arbitrary function (and so  of a correspond- 

ing pencil), the limit curve will be invariant. The limit curve will be 

a function only of the contraction mapping. The limit function is thus a 

part of the structure of the space C w  since it admits into its structure 

this type of transformation. 

The final step is to associate the invariant curve C of C 

and given by the parametric equations 

with a curve, given by 

whose line element is spcified by the direction 
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. It is m i  I at a generic point (x,y), yr (4; ---, Yml) 

supposed that the functionjA fulfills all the conditions of the initial 

hypothesis. 

of the space R 

The equation (7.4) has for its unique solution the curve in 
given by the equations ( 7 . 3 ) .  This solution is correpondingly RW+I 

expressed implicitly by the system of integral equations (6.1). This 

implicit statement is given explicit formulation by the converging se- 

quence of ap-iroximate solutions [ x ‘ t x j ,  Y,&hJ,---J of the system of in- 

tegral equations ( S O T ) ,  namely 

y%)= . # e u L  T t ( y ) ,  ( r z c ? , l , L , - - -  (7.5) -%+- 

If now the same system (5.7) is viewed as a contraction map- 

ping of the complete metric space Cm into itself, then the invariant 

curve 

Of the transformation is a l s o  the limit of the pencil of curves ( C O ,  C , , - - - )  

given by the same fundamental sequence ~VO(XJ,V,(~J, - - - ]  . So that 

where the initial arbitrary function y , ” c X )  no longer appears. 

The two curves (7.2) and (7.3) of different origin and differ- 
ent spaces are shown to be the same unique curve. The curve C which in 

space C* is the one and only one invariant of the contraction mapping is 

in the space Rm+’ the limit of a sequence of curves generated by the 

solution of a system of integral equations. 

111. FETHODOLOGICAL DEVELOPMENT 

The method evolved inthis part in the solution of any system 

of differential equations which fulfill the conditions specified by the 
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hypothesis in the extenaed existence theorem, will depend in part on the 

mode o f  choice of the initial arbitrary function y:()q. Two versions o f  

the same method will be developed. The process is one of many possible 

modes of solution justified by the extended theorem. 

The method to be discussed has been used [S]in the iterative 

solution of the N-body problem but with a specialized existence theorem 

formulated for the special case. This part of the paper will consist in 

the discussion of methodology followed by the formulation of a difference 

and an e m o r  function for the solution of tne system of  equations. 

The Methodology: It is assumed that for the given system of differential 

equations and boundary conditions 

(8.1) -W= j y X , Y ; - - - , v )  p y x ) =  74 l o )  -*'J A= j 3 - - > - ,  
A %  f . '  

the hypothesis involved in the extended existence theorem is satisfied. 

The solution y()rl is continuous on ( K - & ( L , ~  and is given as 

4(xj =&l- m*- 43%) 

where the continuous function yz(3) is an element of  the complete metric 

space C m  . 
itself such that an iterative sequence rqe(xJ, 4,(dJ---3 is formed, each 

element of which is dependent on the initial function r:(x) . A variety 

of modes of definition may be used to formulate this initial function. 

This elcment is generated by a contraction mapping of C m  into 
4- L 

Consider the three distinct sets o f  solutions 

(8.1) 

( 8 . 2 )  1 

( 8 . 3 :  1 
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’ ,respectively of the systems of differential equations 

The functions y d ( & j J  T;, ~ , L ( K )  
solution or limit solution, the finite serial solution and the iterative 

solution of the system (8.1). 

will be called respectively the 

Two variations in the method to be presented are open in the 

generation of the solutions and their relations. The first variation is 

to start with the solutions (8*1)t --- directly and the second by con- 
sidering the derivatives (8.1),--- . 

(a) Let 

be the  power series representation of the solutionY‘(x) 

(8.1) on the interval I % I 5  4 . 
write x 0 = o  . The finite serial solution of (8.1) or in the form (8.2) 

may then be written as 

of the system 

The gerality is not diminished if we 

F or each n, an element (a partial sum) inthe converging sequence 

(8-5)‘  

is generated by the expression (8.5). The limit of the sequence of 

approximate solutions v&(%) 
of (8*1), namely 

. of the system (8-2) is the solution 
4 

F r o m  (8.6) it fo l lows  that 



If the elements .r,"(x) in the fundamental sequence 

(8.8)' 

are derived from the contraction mapping (8.3)' then by the extended 

L V..(KJ, $ i ( X ) j  - - -3 r,"&J, - - -3 

From (8.8) we get 

Equate the right member o f  (8.6) and (8,8), namely 
6 + ( X )  = P-YY- y k  ( x )  (8.10) el-,- -+- nr+p 

For n=o define 

f o r  all x in its interval. It further follows from (8.10) that 

Equation (8.10)' allows a determination of the iterative 

solution 7q()ll of the seqience (8.8)' provided the initial function 

?:(#) is given, A specialized form of this function is given by 

(8.1119 namely ~ o " c ~ )  = ~ ; S " C x , )  

value of p9 the closer is the iterative solution to the actual solution 
. It is manifest that the larger the 

YC(x) of the original system (8.1)? for a vixed n. It is also 
- A d  obvious that the mode of generation of the initial function r ? @ ( X )  = VCO() 

by a finite power series is but one of many possible ways in its generation. 

(b) The second mode in the formulation of the solution yc(,') 



of the system (Sol) is to start with this given differential system and 

to equate the limits as given by (8.7) and a(8.9). Thus 
JVh/ - &$()o - -  *-)- L I K  -*e A x  ( 8 ~ 2 )  

or in the equivalent form 

where 

(8.15) 

The expression (8*14) is a system of m equations which may 

be solved for the m unknown functions vJfK),- - - J  4 ,  IM (x) 

of the remaining quantities X g  4~~ ---)7&, (e;);  ---3 (&;)/ 
Thus the approximate solution is given by 

in terms 
-* - - I  

where the order of the approximation is given by the value assigned to @ 

which determines the initial function yoL CY) = ?;(r)  b This 

second process has been used in refo to generate the iterative solu- 

tion of  the analytic N-body problem. 

For any specific problem the inverse form of ( 8 , 1 6 )  may be 

found more amenable to resolution, na-inely the expression of 

where the quantities [ei(x)] ' 
given by (8.15)0 

still have the same meaning as that 
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The Difference and Error Functions: 

G + R  

characterize this function and to get its measure. This w i l l  allow us to 

determine the rate of convergence of the iterative approximations -y," ( X I  

to the actual solution y"(X) of the system of differential equations (8 . ; ) .  

In the previous section the function 
*. was defined by the expression (8.lol1. Our purpose is to 

Ad 

Suppose the quantity eq+@(x) is given a more consistent 
symbolism relative to its definition (8.10); namely 

& 

The quantity em,  ,,.,+fi 

between the two elements 7: and Tm:p 

will be called the e or the difference function 
of the respective contraction 

converging sequences, 

For n=o define, as has been done, the €-function by the ex- 

pression 

for any i s  M I  " A  

It follows from (9.1) and definition (8,s) that 

An expression for the difference function is readily derived 

in terms of the metric of the complete metric space C y  

definition ( 9 0 1 ) ,  the statement 

By means of 

is ,,,1: a 
VCIILU. Iii view of tne definition (5.4) of the metric g between two 

where Pm,& is defined as 



(9.4) 1 

An inequality is thus generated from expression (9.1) with the use o f  

(9.41, namely 
(9.5) 

A useful formula (a generalization of the inequality (5.12)t)  
& in the comparison of any two elements "1.11 

iterative sequence [ ~ o ( x ~ , ~ , ~ y j ,  ---I 
and y:+7, + = ol - - - of the 

is unfolded from the defini- 

tion 

It f o l l o w s  that 

But by the definition of contraction mapping A of C m  into 

itself, namely 

Expression (9 .6)  in turn may be put in the form 

Expression ( 9 . 6 )  or (9.7) is a generalization of the inequal- 
ity (5.12)*. Thus if (5.12) is written in the form 

f(firGJ "7*:1) 5 ~ ~ ( ? ~ 9 ~ m ~ l )  

where for n-1 we write n (n-l+ n). The above form may then be expressed as 
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-WW$,.c &w+l lvJ I ", o( m+*,LI em-,,* -G rrll 

then if r=l is substituted in expression (9.7),the same inequality for I 

the difference function is formed. I 
Consider now the elements (the partial sums) of  the sequence - 

p;, 7;+, , %,-- - ) 
For any two elements 

as generated by the finite power series (8.5). 

t+ Y 

This leads to the irequality I 

. 
Since 1x1 SA and in view of the definition of the -function, it fol- 

~ 

. lows that 

Combine inec>ualities (9.7) and (9.8) and transpose to get ~ 

I 
I In terms of the metric of the space, inequality (9.9) becomes 

~ 

Expression (9.9) is a measure of the maximum difference between any two ~ 

elements 7," ( x )  
in terms of (1) the maximum difference of two elements 

and y4:,(x\ of the iterative sequence Cy:/. vG---) 

and %-,+P- ym?, 
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I of the same sequence (the immediate predecessors of the former elements), 

(2) the maximum difference tween two elements yi+y, 7; of the partial 

- - -) and ( 3 )  the finite sum of the prod- sum sequence (3% > "i*, 3 

uct of the coefficients and the radius of convergence h of the series 

"f(%) = Tr(xJ = Fa;fit 
m-- + 0 

It may be noted, briefly, that expression ( 9 . 9 )  may also be 
, 

interpreted as an error function of the actual solution y4C(~j 

given system of differential equations relative to any term in the itera- 

tive sequence. Thus if we define 

of the 

(9.11) 

- it follows that 

If now expression (9.9) is used we get the error function 

That expression (9.11) is a measure of the error function relative to 

the actual solution Yc& is manifest, since the 
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